A Non-Local Fuzzy Segmentation Method: Application to Brain MRI

نویسندگان

  • Benoît Caldairou
  • François Rousseau
  • Nicolas Passat
  • Piotr A. Habas
  • Colin Studholme
  • Christian Heinrich
چکیده

The Fuzzy C-Means (FCM) algorithm is a widely used and flexible approach to automated image segmentation, especially in the field of brain tissue segmentation from 3D MRI, where it addresses the problem of partial volume effects. In order to improve its robustness to classical image deterioration, namely noise and bias field artifacts, which arise in the MRI acquisition process, we propose to integrate into the FCM segmentation methodology concepts inspired by the Non-Local (NL) framework, initially defined and considered in the context of image restoration. The key algorithmic contributions of this article are the definition of an NL data term and an NL regularisation term to efficiently handle intensity inhomogeneities and noise in the data. The resulting new energy formulation is then built into an NL/FCM brain tissue segmentation algorithm. Experiments performed on both synthetic and real MRI data, leading to the classification of brain tissues into grey-matter, white matter and cerebrospinal fluid, indicate a significant improvement in performance in the case of higher noise levels, when compared to a range of standard algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis

Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...

متن کامل

REGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY

Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to...

متن کامل

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

Segmentation of Magnetic Resonance Brain Imaging Based on Graph Theory

Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2009